Learning like the human mind

Learning like the human mind

Learning like the human mind

The rapid advancement of artificial intelligence has led to increasingly sophisticated models, yet these systems still face fundamental efficiency challenges. A team of researchers led … Read More

Modeling Extremely Large Images with xT...

Modeling Extremely Large Images with xT...


As computer vision researchers, we believe that every pixel can tell a story. However, there seems to be a writer’s block settling into the field when it comes to dealing with large images. Large images are no longer rare—the cameras we carry in our pockets and those orbiting our planet snap pictures so big and detailed that they stretch our current best models and hardware to their breaking points when handling them. Generally, we face a quadratic increase in memory usage as a function of image size.

Today, we make one of two sub-optimal choices when handling large images: down-sampling or cropping. These two methods incur significant losses in the amount of information and context present in an image. We take another look at these approaches and introduce $x$T, a new framework to model large images end-to-end on contemporary GPUs while effectively aggregating global context with local details.



Architecture for the $x$T framework.

Read More

How To Choose the Right AI...

How To Choose the Right AI...

Artificial Intelligence (AI) and Machine Learning (ML) have become the backbone of modern businesses. From streamlining backend operations and automating workflows to creating personalized user … Read More

Function Calling at the Edge –...

Function Calling at the Edge –...


The ability of LLMs to execute commands through plain language (e.g. English) has enabled agentic systems that can complete a user query by orchestrating the right set of tools (e.g. ToolFormer, Gorilla). This, along with the recent multi-modal efforts such as the GPT-4o or Gemini-1.5 model, has expanded the realm of possibilities with AI agents. While this is quite exciting, the large model size and computational requirements of these models often requires their inference to be performed on the cloud. This can create several challenges for their widespread adoption. First and foremost, uploading data such as video, audio, or text documents to a third party vendor on the cloud, can result in privacy issues. Second, this requires cloud/Wi-Fi connectivity which is not always possible. For instance, a robot deployed in the real world may not always have a stable connection. Besides that, latency could also be an issue as uploading large amounts of data to the cloud and waiting for the response could slow down response time, resulting in unacceptable time-to-solution. These challenges could be solved if we deploy the LLM models locally at the edge.

Read More